Curiosity Rover at ‘Pahrump Hills’

NASA’s Curiosity Mars rover can be seen at the “Pahrump Hills” area of Gale Crater in this view from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.  Pahrump Hills is an outcrop at the base of Mount Sharp. The region contains sedimentary rocks that scientists believe formed in the presence of water.

The location of the rover, with its shadow extending toward the upper right, is indicated with an inscribed rectangle. Figure A is an unannotated version of the image.  North is toward the top. The view covers an area about 360 yards (330 meters) across. 

HiRISE made the observation on Dec. 13, 2014. At that time, Curiosity was near a feature called “Whale Rock.”  A map showing the rover’s path for the weeks leading up to that date is at http://ift.tt/1DeDac2 .  The inset map at http://ift.tt/16owOdk labels the location of Whale Rock and other features in the Pahrump Hills area.

The bright features in the landscape are sedimentary rock and the dark areas are sand.  The HiRISE team plans to periodically image Curiosity, as well as NASA’s other active Mars rover, Opportunity, as the vehicles continue to explore Mars.

This image is an excerpt from HiRISE observation ESP_039280_1755. Other image products from this observation are available at http://ift.tt/16owPha .

The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colorado. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project and Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. 

Image Credit: NASA/JPL-Caltech/Univ. of Arizona via NASA http://ift.tt/1BUWhDB

Advertisements

‘State of NASA’ Address at Kennedy Space Center

In the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden delivers a “state of the agency” address on Feb. 2, 2015 at NASA’s televised fiscal year 2016 budget rollout event with Kennedy Space Center Director Bob Cabana looking on, at right. Representatives from the Kennedy workforce, news media and social media were in attendance. NASA’s Orion, SpaceX Dragon and Boeing CST-100 spacecraft, all destined to play a role in NASA’s overall exploration objectives, were on display.

Photo credit: NASA/Amber Watson via NASA http://ift.tt/1zDuXgo

Cloud Streets in the Bering Sea

Ice, wind, cold temperatures and ocean waters combined to created dramatic cloud formations over the Bering Sea in late January, 2015. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite passed over the region and captured this true-color image on Jan. 23.

The frozen tundra of Russia lies in the northwest of the image, and snow-covered Alaska lies in the northeast. Sea ice extends from the land well into the Bering Sea. Over the dark water bright white clouds line in up close, parallel rows. These formations are known as “cloud streets”.

Air blowing over the cold, snowy land and then over ice becomes both cold and dry. When the air then moves over relatively warmer and much moister water and lead to the development of parallel cylinders of spinning air. On the upper edge of these cylinders of air, where the air is rising, small clouds form. Where air is descending, the skies are clear. This clear/cloudy pattern, formed in parallel rows, gives the impression of streets.

The clouds begin over the sea ice, but they primarily hang over open ocean. The streets are neat and in tight rows closest to land, while further over the Bering Sea the pattern widens and begins to become more random. The rows of clouds are also not perfectly straight, but tend to curve. The strength and direction of the wind helps create these features: where the wind is strongest, nearest to shore, the clouds line up most neatly. The clouds align with the wind direction, so the direction of the streets gives strong clues to prevailing wind direction.

Image Credit: NASA/Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC via NASA http://ift.tt/1z6p62x

Super View of Glendale and Phoenix

One of the Expedition 35 crew members on the International Space Station used a still camera with a 400 millimeter lens to record this nocturnal image of the Phoenix, Arizona area on March 16, 2013. Like many large urban areas of the central and western United States, the Phoenix metropolitan area is laid out along a regular grid of city blocks and streets. While visible during the day, this grid is most evident at night, when the pattern of street lighting is clearly visible from above — in the case of this photograph, from the low Earth orbit vantage point of the International Space Station. The urban grid form encourages growth of a city outwards along its borders, by providing optimal access to new real estate. Fueled by the adoption of widespread personal automobile use during the 20th century, the Phoenix metropolitan area today includes 25 other municipalities (many of them largely suburban and residential in character) linked by a network of surface streets and freeways. The image area includes parts of several cities in the metropolitan area including Phoenix proper (right), Glendale (center), and Peoria (left). While the major street grid is oriented north-south, the northwest-southeast oriented Grand Avenue cuts across it at image center. Grand Avenue is a major transportation corridor through the western metropolitan area; the lighting patterns of large industrial and commercial properties are visible along its length. Other brightly lit properties include large shopping centers, strip centers, and gas stations which tend to be located at the intersections of north-south and east-west trending streets. While much of the land area highlighted in this image is urbanized, there are several noticeably dark areas. The Phoenix Mountains at upper right are largely public park and recreational land. To the west (image lower left), agricultural fields provide a sharp contrast to the lit streets of neighboring residential developments. The Salt River channel appears as a dark ribbon within the urban grid at lower right.

Image Credit: NASA via NASA http://ift.tt/1wSk6ZU